[미적분] calculus(미적분) differential calculus(미분)
페이지 정보
작성일 23-01-03 04:03
본문
Download : 4_Differential_Calculus.hwp
설명
Download : 4_Differential_Calculus.hwp( 79 )
[미적분] calculus(미적분) differential calculus(미분)
시험대비 theorem(정리)과 definition(定義(정이))를 보기 좋음.



4. Differential Calculus
Definition of Derivative
Example 7. Continuity of functions having derivatives.
Theorem 4.1.
Theorem 5.2. Chain Rule.
4. Differential Calculus
Definition of Derivative. The derivative f`(x) is defined by the equation
f`(x) = , provided the limit exists. The number f`(x) is also called the rate of change of f at x.
Hint. an - bn = (a-b)
Hint. sin x - sin y = 2 sin cos
Hint. = 1
Hint. cos x - cos y = -2 sin sin
Example 7. Continuity of functions having derivatives. If a function f has a derivative at a point x, then it is also continuous at x (반대는 성립 X일수도)
- f(x+h) = f(x) + h()
- Continuity : (a) f is defined at p
(b)
Theorem 4.1. Let f and g be two functions defined on a common interval. At each point where f and g have a derivative, the same is true of the sum f+g, the difference f-g, the product f ? g, and the quotient f/g. (For f/g we need the extra proviso that g is not zero at the point in question.) The derivatives of these functions are given by the following formulas :
(i) (f + g)` = f` + g`
(ii) (f - g)` = f` - g`
(iii) (f ? g…(省略)
미적분의 미분에 대해 영어 자료(資料) 정리
미적분,미분,적분,calculus,시험자료,전문자료
미적분의 미분에 대해 영어 자료 정리시험대비 theorem(정리)과 definition(정의)를 보기 좋음. , [미적분] calculus(미적분) differential calculus(미분)시험자료전문자료 , 미적분 미분 적분 calculus
순서
전문자료/시험자료
다.